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Technical Objective:

The goal of our research is to analyze ground test data, to identify patterns associated with the

anomalous engine behavior. On the basis of this analysis, it is the task of our project to develop

a Pattern Identification and Detection System which detects anomalous engine behavior in the

early stages of fault development significantly earlier than the indication provided by either

redline detection mechanism or human expert analysis. Early detection of these anomalies is

challenging because of the large amount of noise presence in the data. In the presence of this

noise, early indication of anomalies becomes even more difficult to distinguish from fluctuations

in normal steady state operation.
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Progress:

The neural networks method have been applied in this period to supplement the statistical method

(Ref. 1) utilized previously to investigate the feasibility in detecting anomalies in turbopump

vibration of SSME. The anomalies are detected based on the amplitude of peaks of fundamental

and harmonic frequencies in the power spectral density. These data are reduced to the proper

format from sensor data measured by strain gauges and accelerometers. Both statistical and
neural network methods are feasible to detectthe vibration anomalies. The statistical method

requires sufficient data points to establish a reasonable statistical distribution data bank. This

method is applicable for on-line operation. The neural networks method also needs to have

enough data basis to train the neural networks. The testing procedure can be utilized at any time

so long as the characteristics of components remain unchanged.
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The feasibility study for detecting anomalies in turbopump vibration data has been conducted

with data from ground tests 902-473, 902-501,902-519, and 904-097 of the Space Shuttle Main

Engine (SSME). The study has been designed to analyze vibration data from each of the

• following SSME compotients_ high:pressuie oxidizer turbopump, high-pressure fuel turbopump,

low-pressure fuel turbopump, and preburner boost pump. The pre-processor module of the

software system locates and classifies peaks in the power spectral density of each 0.4-sec window

of steady-state data. Peaks which represent fundamental and harmonic frequencies of both shaft

rotation and _arlng Cage rotation are identified by the module. Based th e Statisti_s a_:d neut.

networks methods, anot_alies _are then detected by the-amplitude of each of these peaks

individually'

Using the statistical method, anomalies are detected on the basis of two thresholds set

individually for the amplitude of each of these peaks: a prior threshold used during the first group

of windows of data in a test, and a posterior threshold used thereafter. In most cases the

anomalies detected by the statistics agree with those reported by NASA as given in Ref. 2.

Using the neural networks, the amplitude of each of these peaks are selected as input training

data sets including normal and abnormal samples in a single test. The reserved testing data

which have not been used to training the network in the same test are applied to assess the

effectiveness and feasibility of the neural network approach. The HPFTP is the selected

component for the current study. The rate of correct diagnosis to identify the normal or

abnormal conditions is better than 95% of the total testing cases.

Current Systems

The prototype software systems have been designed for detecting anomalies in turbopump

vibration data from ground tests of SSME by using the statistics and neural networks. The sensor

data pre-processor module is described in the following sections.
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Sensor Data Pre-processor

Vibration data was provided by NASA in the form of FFI" from accelerometers mounted on the

oxidizer and fuel pumps. A set of Fortran programs running on the UTSI VAX 11/780 has been

developed to read these data tapes in NASA binary format which is inherently machine-

dependent, to swap bytes from the NASA binary format to the VAX internal binary

representation, and to convert the data into a portable ASCII format. After initial preprocessing

on the VAX, the power spectra are stored in a form which can be quickly sent to any other

platform at UTSI.

The Frequency Extractor is designed to identify the fundamental and harmonic frequencies of

both shaft rotation and bearing cage rotation in each FFT window. Firstly peaks representing

candidates for the shaft fundamental are reliably found based on an empirical linear fit, for each
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type of turbopump, of shaft rotation speed to SSME power level. The actual shaft and cage
fundamental and their harmonics are then identified based on the ratio of cage to shaft rotation

and the required consistency among the different harmonics of both shaft and cage. Freq-Extra

is also designed to detect the intermittent frequencies whose amplitudes are above a specific

value i.e. noise-level.

The typical data histogram of synchronous frequency plotted as the number density distribution

from 1500to 3900 units amplitude from 110 windows during the time period of !69 see. to 213
see. is shown m fi_ 1.'"The typical data histogram of 240-hz fromsens0r 686 & 698 is shown

in figure 1. The data from sensor 613 shown in figure 2 are synchronous and sub-synchronous

frequencies. All distribudon is close tO a 'normal Gaussian' function. The 2nd, 3rd and 4th
harmonics also have the similar distribution. Thus, the statistic mean and standard deviation of

the data distribution are useful as the benchmark for the anomalies detection.

The overall results assure us that the statistical strategy for detecting anomalies works

reasonably well for most cases tested as given in the previous semi-annual report (Ref. 1 ) and

an AIAA conference paper (Ref. 3).

Neural Networks Diagnosis

For a specific turbopump component, the fundamental frequency and harmonics for the normal

and abnormal conditions have their distinct characteristics as shown in Figure 3 and 4. The

neural networks algorithm is a powerful pattern recognition method. Thus, the application of the

neural nets techniques to the HPFTP's data from test 501 and 519 allows us to examine the

feasibility in diagnosing the anomalies.

Neural Network Algorithm Description. A three-layer Back-Propagation (BP) Neural Network

has been selected for the present study. Multilayer BP networks have been studied extensively

and are widely used for pattern classification. Multiiayer networks are able to classify non-

linearly separable classes. In the present case, a three layer network is utilized including input

layer, hidden layer and output layer. A 3-layered (input, hidden,output), fully connected, feed-

forward network as shown in figure 5. The normalized data sets are utilized. Both input and

output are continuous-_,alued (between -0.5 and 0.5) vector. The outputs generated by the

network are compared with the desired or target outputs. Errors are computed from the

differences, and the weights are changed in response to these error signals as dictated by the

Generalized Delta Rule (Ref. 4). Thus, a BP network learns a mapping function by repeatedly

presenting patterns from a training set and adjusting the weights. A commercial neural network

program named ANSim (Ref. 5) is utilized for the training process as well as the testing process.

The Training Procedure is in the iterative fashion. It loops repeatedly over the set of training

patterns until the total root mean square (RMS) error for all patterns is less than the specified

value, e.g. 0.1. The Testing Procedure is forward feed processing.
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Neural Network ANSim Software. SAIC ANSim 2.30 (Ref. 5) is a graphics oriented, menu-

based artificial neural system (ANS) simulation program, which provides a complete complement

of neural model development, allocation and analysis capabilities, including a powerful ANS

':creation, training, execution:and monitoring., tool. _ ANSim enables users. _ quic!cly..implemc.nt _.....: ..:

and utilize ANS models using 13 paradigms such as Back Propagation (BP), Hopfiled Network,

etc. ANSim enables the user to configure any number of ANS neural networks. It drives eai:h

network with a sequence of training and/or input data. For each mode1, ANSim Will (1) monitor

the response, (2) capture the Output, and (3) save the configuration for later re-use. AN Sim is. :

integrated Under Microsoft Windows t0 provide an effective, easy-to-use interface. __ '_' _" _' "............

.... Floating Point Processor for ANSim, A PC386 (VGA or EGA monitor) with the SAIC'sDelta :. - ,.

Floating Point Processor, which is a 22 MFlop AT bus compatible processor, allows for high

speed Neural Network Systems training and processing.

Sample Data in the Form of Spectrum Plots. The typical data sets are obtained by the pre-

processor module as shown in Fig. 3. consisting of synchronous frequency samples of normal
and 240-hz abnormal data sets for sensor 696 and 698. The sensor 617 for Synchronous and Sub-

synch frequency data is shown in Fig. 4. The reserved testing data shown in figures 3 & 4,

which have not been used for training the network in the same test, are applied to assess the

effectiveness and feasibility of the network approach.

Results of Neural Networks. The initial selected component for the current study is the HPFTP.

The vibration data from ground tests 902-501 and 902-915 for the HPFTP as shown in figure

3 & 4 are utilized to the current vibration anomalies detection. The successful detection rate is

higher than 95% to identify either normal or abnormal running condition. The results have

indicated that the application of Neural Network to the available SSME vibration data sets in

diagnosing existing faults in the data is a viable method.
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Moreover, the actual clock time of computer computation on a PC-386 with Floating Point

Processor are less than 1 minutes for the training process. The testing time of the feed-forward

process is near real time in the present case. This is important to know this computation time

•for planning on-line or off-line operation in addition to its ability to identify the correct

anomalies.

Qim Summary
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Automatic detection of anomalies in Space Shuttle Main Engine Turbopumps has been

implemented as a prototype software system on a Symbolics 3670 lisp machine and on a PC.

The system has demonstrated its capability in detecting anomalies in turbopump vibration data

earlier than the indication provided by the redline detection mechanism. The present statistical

strategy based on the distribution of data in detecting anomalies for SSME turbopumps seems

to work well, even though some limited cases require further study. On the other hand, the

limited application of neural networks to the HPFTP has also shown the effectiveness and
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w feasibility to diagnose the anomalies of turbopump vibrations. The further investigation on data
from a numerical simulator is warranted.
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Future Work: :

The satisfactory results given by the neural network approach can be reassured to investigate
more cases and more fault scen.arios. Since the ground .testing data :are limited, we decide to use -

' the data generated from a NASA/MSFC,s numerical simulator for the follow_n study. The .... '

support of the data from the NASA/MSFC simulator arc critical to the success of completion of
this endeavor. " " ' ' " " • ......... ". .... • .....
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At 192.6 Sec

"Normal.

At 176.6 Sec
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At 177.0 se_

240HZ Abno_

Samples of Normal and 240-hz Abnormal Data from HPFTP Sensors
of Test 902-501 at the Thrust-level 109%.
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Figure 4. Samples of Normal and Sub-synchronous Abnormal Data from

HPFTP Sensors of Test 902-519 at the Thrust-level 109%.
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Input Layer

(13 nodes ; Shale fundamental

Shaft fundamental's three harmonics

cage fundamental

Cage fundamental's three harmonics

Inner race,outer race,240HZ,Sub-sync

Hidden Layer thrust-level)

( 6 nodes )

Output Layer

(2 nodes: for FASCOS-HPFP, normal & 240HZ abnormal

for HPFP-.R.AD, rmrmai & Sub-sync abnormal)

Figure 5. Three-layer Back-propagation Neural Network Architecture.
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